673 August 31, 1998

Perturbation Theory Calculation of the
Pressure for an Electron-Ion System

George A. Baker, Jr. and J. D. Johnson

Theoretical Division, Los Alamos National Laboratory, Unwversity of California,

Los Alamos, NM 87545 USA

Abstract

By means of finite-temperature, many-body perturbation theory we derive through
order e* the corrections to an ideal Fermi gas plus an ideal Maxwell-Boltzmann
gas of ions. This computation is carried out for general values of the de Broglie
density. The behavior of these coefficients is reported, and their implications for the
ionization profile at low densities are described.
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1 INTRODUCTION AND SUMMARY

There has been, and there continues to be, strong interest in the computation
of as much as possible in the way of exact results for the equation of state
of matter under extreme conditions. In stellar interiors, in plasma fusion, and
in some other applications, the familiar regime of solids, liquids and gases
ceases to be germane. Rather the fluid state in which liquids and gases are
not distinguishable is what is important. In this paper we will be concerned
with a hot and/or dense system of electrons and ions. For a long time, the
mainstay [1-4] of the theory of the equation of state at higher temperatures
and densities has been the Thomas-Fermi or the Thomas-Fermi-Dirac theory.
These theories correctly reduce to the electron ideal gas [5] at sufficiently high
temperature, but as we [6] pointed out previously, even the first deviation
from this limit is incorrectly given by these theories. In this paper we report
the computation of the expansion in powers of the charge on the electron e
of corrections to the ideal Fermi gas, or “hot-curve” limit. The method which
we employ is the finite temperature, Matsubara, many-body, perturbation
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theory [7]. We carry this theory through order e*. As the thermodynamic
functions in the ideal Fermi gas case are functions of the de Broglie density,
the coefficients that we obtain in this expansion are likewise functions of the
de Broglie density. The de Broglie density ( is basically the density times the
cube of the thermal wave length and is defined by (3.1). Preliminary reports
[8-10] of this work have been given and we draw on them, correcting where
necessary a number of infelicities. A great many things can be deduced from
these expansion coefficients, however the main point of this paper is to report
their computation. We do give a short report on the high-temperature behavior
of the low density ionization profile, as an example of one of the things that
can be learned.

In the second section we cover the necessary perturbation theory for our
project. Here the values of the various diagrams are obtained in terms of the
electron and the ion fugacities. In the third section we derive the expansion of
these coefficients in powers of the fugacities. Thermodynamics tells us what
the equations are that relate the fugacities to thermodynamically observable
quantities. In the fourth section we derive these equations and solve them to
the necessary order in e. Following Baker and Johnson [5], we revert the equa-
tion for the de Broglie density in powers of the fugacity to give the fugacity in
powers of the de Broglie density. By back substitution, we may then re-express
all the other expansions which are in powers of the fugacity as expansions in
powers of the de Broglie density. Our results are given in (4.14) and the coef-
ficients for that equation are defined in (4.15-18). In order to be of practical
use, it is desirable to obtain representations which are valid for all positive
real de Broglie densities. In the fifth section, based on the Padé method [11],
we derive compact representations of the various required functions. These
(with one exception) are accurate to within about 0.1 percent. In the sixth
section, we examine the behavior of the various coefficients. Finally, in the
seventh section we discuss the low-density behavior of the ionization profile
in the high-temperature region. Strictly speaking, by the ionization profile,
we mean the density of singly, doubly, etc. ionized atoms and the density of
free electrons. These concepts only make sense when individual atoms can be
identified. When for example, the density is sufficiently high, the system more
closely resembles a soup of electrons and ions and the concept of an atom
looses its meaning. In this study, we confine our attention to the density of
the electrons and the dilute region where the concept of an atom makes sense.

Comparison could be made with the results of the much studied restrictive
primitive model (See for example, [12] and [13] and most particularly, the
numerous references therein. Particular attention is drawn to [14] for compar-
ison purposes. We will however defer these studies to the future. There are
also a number of other approaches with which cross comparison should be
enlightening.



2 PERTURBATION THEORY

One goal in this paper is to compute, for general de Broglie density, the pertur-
bations to the ideal Fermi gas pressure caused by the electrostatic interactions
between electrons and ions. We will treat the electrons as charged Fermions,
but will treat the ions as Maxwell-Boltzmann particles. The treatment of the
ions could be improved, if required. We start with the electrically neutral
Hamiltonian,
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where 7, p’ are the position and momentum for the electrons and R, P are
for the ions of charge Z. To treat our problem we employ finite-temperature
perturbation theory (Matsubara [7]). It is known that when this theory is
applied to the Coulomb potential, that some of the terms diverge in a rather
serious manner. Gell-Mann and Brueckner [15] however have shown that if
all the so-called “ring-diagrams” are summed up before the integration over
the momentum transfer is performed, then the result is finite, but the order
in the coupling constant e? is changed. We will discuss this point in more
detail below. Bedenov [16] briefly describes his investigation of our case for a
degenerate plasma. A fuller description is given by Abrikosov et al. [17]

To begin we note that the thermodynamic potential p{2, where p is the pressure
and 2 is the volume, (See, for example, pp. 68-71 and 105-107 of Landau and
Lifshitz [18]) is given by —kT log Q where k is Boltzmann’s constant, T is the
absolute temperature and Q is the partition function from the grand canonical
ensemble. In terms of other thermodynamic quantities pQ2 = T'S + uN — U,
where S is the entropy, p is the Gibbs free energy, or thermodynamic potential,
per particle, N is the number of particles, and U is the internal energy. The
perturbation series for the pressure is related to that for the energy by the
observation that,

8(—kT log Q)

o =e V), (2.2)

where V is the interaction potential, i.e. everything proportional to €2 in (2.1).
Thus,

Pl = /6_2<V> de* + poQ, (2.3)



relates the series for the energy and that for the pressure. Note that, of course,
the wave function changes as e increases in the integral. The quantity p, is
the ideal Fermi gas pressure given by (3.2).

The finite-temperature perturbation series is conveniently described in the
wave-number space representation. The wave-number representation for the
interaction potential is

V() =S a(q) = S (2.4)

The rules for the perturbation series for the interaction energy which insure
that the proper quantum mechanical expectation values are taken are briefly:
First draw the Goldstone type diagrams which are associated with the various
terms in the perturbation series. We in fact use the type of diagrams discussed
by Baker [19]. Here there are no lines entering on the left nor leaving on the
right. Label every line in such a way that the wave-number is conserved at
every vertex. Associate a frequency with each independent wave-number. The
frequencies must also obey a conservation rule at every vertex. The frequencies
on every Fermion line are odd (w,, = (2n+1)7kT) and those with every Boson
line must be even (w,, = 2mnkT). Now with each fermion line (particle or hole)
associate a factor of

U
eWnT

i, —e(p") +

(2.5)

where W/, and p’ are the frequency and the wave-number associated with that

line. We define,

? (2.6)

where 7 is Planck’s constant h divided by 27. With each Boson line (the wavy
lines internal to each interaction symbol) associate a factor of o(¢’) where ¢
is the wave-number associated with that line. Note that if the vertex is not
electron-electron, then a factor of Z or Z? would also be needed as the case
may be, and as it is really momentum that is conserved, account of the masses
must be taken. Next examine the diagram of order n vertices and count the
number of closed loops [ made by the combination of the particle and hole
lines. Multiply the term by a factor of

(25 + DI(=1)'(=AT)"

(27r)3(n+1)2n (2'7)
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Fig. 1. The diagrams for the first-order interaction in e?. The wavy lines represent
the momentum transfer during an interaction, the dashed lines are Fermion holes,
and the solid lines (in subsequent diagrams) represent Fermions.
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Fig. 2. The second-order direct-interaction diagram. See the caption of Fig. 1 for
the line descriptions.

Next sum over the independent frequencies, take the limit as 7 — 0, and finally
integrate over all the independent wave-numbers. The following identities are
useful in doing the frequency sums.

> ! L cott ( X )
— - =—Ccotn | ——
2nmikT + X 2 2KT)’

n=—odo

+oo ei'r 1 X 1
lim kT = “tanh () + - 2.8
kT 3 @nt DmkT + X 2 0 (sz) + g8, (2:8)

o) = exp;[ew) G ESRE [l ~ tenh <%)]

Our goal will be to compute the corrections to the pressure to the order of
e!. The first step is to examine all the diagrams up to and including two



Fig. 3. The third-order ring diagram. See the caption of Fig. 1 for the line descrip-
tions.

interactions. We will, following Abrikosov et al. [17], ignore the ion exchange
terms as relatively small. The electron-ion exchange terms do not exist as they
are not identical particles. In first order in €2, the direct terms, D1 shown in
Fig. 1, consisting of the electron-electron, electron-ion and ion-ion terms cancel
each other out by electrical neutrality. The first exchange term, E1 shown in
Fig. 1, by our rules, gives the contribution,

47'('62 dEldEo - -
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which agrees with the results of Abrikosov et al. [17]. This result concludes
the study of the first-order perturbation theory.

In second order in e? there are a number of cases to consider. The first is the
so called direct term, D2, Fig. 2. We work initially, for ease of exposition,
with the electron-electron terms. Since there are two equivalent direct terms,
we get,

2(4me?)2(kT)3 > dky dis dq*l 1 1
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where w; and w, are odd and ws is even. The thing to notice is that the
integral over ¢ diverges as ¢ — 0. The solution to this problem was given
by Gell-Mann and Brueckner [15] in the context of the ground-state energy
problem. It is to sum up all the “ring diagrams” before doing the integral over
the momentum transfer, §. The Fourier transform trick used by them to sum
up these diagrams to all orders is basically incorporated in our formalism, if



we are careful to wait until after summing up all orders to sum over ws. Doing
the sums over w; and wy in (2.10) we get,

o Z/ lsm =(q wg)r, (2.11)

where

(o) — L [n(k) — n(k — §)] dk
=( 3)—(%)3 it R D (2.12)

In third order in e? there is just one term, Fig. 3, which gives the contribution

32/
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In higher-orders, there are many “vertex orders” of the same diagram, but by
the arguments of Gell-Mann and Brueckner [15], they are represented in our
formalism by a single term. The whole series of these most highly divergent
terms in the perturbation expansion for (V') then formally sums to

2(";;)3 >/ dq-»{ [Bre=(d,uo)f } | o1
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When we convert (2.14) to the series for the pQ2, by (2.3), we get, interchanging
the orders of integration,

8me? e
dg<{In |1 — =
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The next problem is to analyze the leading order behavior in the limit of small
e2. To this end we introduce the dimensionless variable,

2 Ze?
kTry

Q = 3nryN. (2.16)

If we re-express the wave number ¢ = yp, then = becomes,

I /d'? (i) seat (") +00°)

E(yﬁ; w3) = - (271_)3 ’ (217)



where

Ae=1>(2yp - k — v°p?)/(2m), (2.18)

and one term in (2.17) of nominal order 32 is not shown because it vanishes
on integration over the angles of k. In order to do the sum over w3, there are
two cases to consider. In the first, w3 = 0, and

== 2 (E) —H
=(yp,0) = 741671 - /dk:sech ( KT ), (2.19)

which is independent of p. In the case where w3 # 0, Z is of nominal order y
which is already small compared to the w3 = 0 case which was of order unity,
but again the integration over the angles of k reduces the size even further
to the order of y2. Thus we only need to retain the w; = 0 term to give the
leading order, plus the next order as well, for the sum of these ring diagrams.
When we recognize that integration by parts etc. yields,

[i(ed)-dpa-t  wm

we may write that our sum of ring diagrams is
kT (= (E) — i
— = dk sech?
(27)2 <3) [( V2kT / oee ( 9kT )

which is of order e with an error term of order e* as the integration in (2.20)
changes the order of the errors from the expected e°. The divergence in the
integration over ¢ has been converted into a lower order in the expansion
parameter.

3/2
(2.21)

The work to include the ion terms is just the same, except that e? is multiplied
by —Z for the electron-ion interactions and by Z2 for the ion-ion interactions,
the ions are being treated as spinless, and the ions have a Maxwell-Boltzmann
distribution rather than a Fermi-Dirac one. The proper change is to make = the
sum of the electron (2.12), plus Z? times the ion function, which substitutes,

min(B) = 5 exp{lu— e(B)/(RT)}, (2:22)

for n(k). The factor 1 is to take account of no ion spin. Thus (2.21) becomes,

to take account of all the interactions,



Fig. 4. The second-order exchange-interaction diagram. See the caption of Fig. 1 for
the line descriptions.
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since the integral over the resulting function in the ion case is easily expressed
in terms of the density normalization. This finishes the study of the terms of
order €3, or the Debye-Hiickel term.

We now consider the calculation of the terms of order e* which we call the
second exchange correction. We do not know of previous work on this term.
The first contribution F2a is the exchange, Fig. 4, of the the direct term shown
in Fig. 2. Following the rules as expounded above, we obtain for electron-
electron exchange, by reducing the integrand to dimensionless form,

- (47e?)? <2ka>5/2 / dky dky dg  sinh(G- (§+ k1 — k»))
E2a — = = pry =
25kT (2m)° R P(T+ k1 — k)2 §-(§+ k1 — ko)

74+ kp)? k2 ky — §)?
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x cosh (k—g . L) ] - (2.24)

2 2T
where use has been made of the standard identities,

sinh(z + y)
sinh z sinh y’

sinh(z + y)

2.25
coshz coshy’ ( )

cothz + cothy = tanh z 4+ tanhy =

to obtain this form.

Next, there occurs to this order in perturbation theory one term which does
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Fig. 5. The second-order “forbidden diagram” and its exchange variants. See the
caption of Fig. 1 for the line descriptions.

not occur in the ground state energy expansion, plus its three exchange vari-
ants. They are shown in Fig. 5. The reason that they do not appear in the
ground state energy perturbation theory is that, contrary to finite-temperature
perturbation theory, in that theory there can not be simultaneously a hole
and a particle with the same momentum. In finite-temperature theory, we are
dealing with an ensemble and hence can have, on the average, fractional occu-
pation of a state, and hence this case is not forbidden. In the first three terms
shown in Fig. 5 there is at least one interaction in which zero momentum is
exchanged. All three of these cases cancel among the corresponding electron-
electron, electron-ion and ion-ion terms by electrical neutrality. In the final
case, whose contribution we call F2b, there is exchange at both vertices. The
contribution here for electron-electron exchange can be worked out by tak-
ing the 0/0X of the second identity of (2.8) to get the frequency sum where
one of the denominators appears squared. Again reducing the integrand to
dimensionless form, we obtain,

PEX =53, (2m)0 \ 12

2(112 _ p
sech (§k1 — o

[1+exp (k— )] [1+exp (k3 — )]

(4e?)? (2ka> 5/2 dley dicy dics
(

X

(2.26)

Again, as in the first exchange correction, we ignore here, and in E2a, the
ion-ion exchange as being relatively small.
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Finally in order to compute the e* order term which is given by our sum of
the ring diagrams, it is necessary to analyze the difference between the whole
term and the leading order €3 term. We may conveniently write this difference

as,

KT Z/d* tn |1 — ¥ 27, wn) + Z2Zin (G w0)]
22m) &) PR

8me?

+ qg [E(q_;wii) +ZQEion((T7 w3)]} (227)

2(’;777:)3 / dq {m ll 826 [2(0,0) + 2250, (0, 0)]]
8me?
¢

[2(0,0) + Z2E;0.(0, 0)]}

If we expand this expression for small e we obtain, for the e* term,

PpHa = Z/ {[87“3 E(q,ws) + Zzulon(ﬂ%)]r
o, l&r: [2(0,0) + 2250, (0, 0)]]2}, (2.28)

which, as we will see, yields a finite coefficient for e*. The Kronecker delta is
denoted by 4, ,,. The next correction is expected to be of the order of 0(64).

At this point it is useful to note a general property of 2 and Z;,,,. As the energy
¢(k) = e(—Fk), the variable change @ = §—k interchanges the two terms n in the
numerator and the two terms € in the denominator of (2.12). Thus =(§,w3) =
2(q, —w3) = Z*(q,w3) and likewise =, (7, ws) = Eion(q, —w3) = B (g, w3).
Hence the whole term is just twice the real part of the term using only the
first n term in the numerator. Also the terms for w3 < 0 are equal to those for
w3 > 0. Thus we need only treat the case of w3 > 0.

It is useful next to employ the identity,

kT o -
B g et i) — il - Q) BT}

(2.29)

Thus we get,
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2(q, w3) (2.30)

= 7(27r)23/~cT§R {iO/dt /dl;:‘n(l;:’) exp{—t[ws + ze(];) — ze(l; _ (j)]/(k:T)}} ’

and

_ . 2
Sion(qyws) = (2m)okT (2.31)

x%{ / dt / AR 1ion (F) exp{ —t[ws + iion () — icion(E —q)]/(kT)}}.

In the ion case the density function (2.22) is of Gaussian form which permits
the integration over k in (2.31) to be evaluated as,

. _ Zion [2TMEKT ;% w3 . /9
Sion(qyw3) = T < ) /dt exp < ﬁt> sin(v°t), (2.32)
where
_ [2MET\? _
qg= ( -, ) v, Zion = €XP|fion /[ (ET)]. (2.33)

The results for the electron case are more complex and are best deferred to
the next section where we discuss the expansion in powers of the fugacity.

3 FUGACITY EXPANSION OF THE COEFFICIENTS

The ideal electron gas thermodynamics are all expressible in terms of the de
Broglie density,

IN [ R \*
= — 1
¢ 2Q <27rmk'T> ’ (3 )
For example
Dideal§)
= 2
INET go(C ) (3 )
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The value of the ideal Fermi gas function go(¢) is well known and is given by
(See for example Huang [20])

90(¢) = ) (3.3)

2
C= =10e), (3.4)
and
o] ne=y
I(z) = Zf’:ﬁ (3.5)

The expansions of both ¢ and go(z) in powers of the fugacity z are also well
known and easily derivable from the straightforward expansions

oo J+1ZJ
I,.(2) (n+1) X:l s n> —1. (3.6)
]:

The goal of this section is to expand all the g;’s in series in the fugacity.
In the next section we use the results of Baker and Johnson [5] who have
reverted the series for ((z) to give the series for the fugacity in powers of the
de Broglie density z(¢). This method will permit the expression of all the g;’s
as series expansions in powers of the de Broglie density. Baker and Johnson [5]
give the first 36 terms of the expansion for go({) and 37 terms for z((). This
computation required the retention of a great many decimal places because it
is numerically very ill-conditioned.

The deduction of the series for the first exchange correction go({) may be
reduced to previous work (Baker and Johnson [6]). If in (2.9) we make the
change of variables, y; = h%k?/(2mkT) for i = 1,2 and then integrate over the
angles we get,

. f+f

4re? *FT \/E
— 2T o2 // dy, d
Pr (27)0 T ( ) /) (e vz 1—|—1(e w14 1) Y1 aY2

_ 4me? o2 (ka)‘X(z) _ _Mm), (3.7)

h4
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where X () agrees with that of (7.2) of Baker and Johnson [6]. They give the
result,

o0 (_Z)nrl—nz

X(e) = : 3.8
(Z) ﬂ-nl,nz:l 71,1?’1,2(711 + ’ng) ( )
In the Debye-Hiickel pressure (2.23) we have the integral,
die k) — 9mkT\? T 2yre v d
/alk:sech2 6()7” — 81 m2 / zyz e Yy
2kT A / (W ze)?
3. (2mkT\2 & (—1)it1z0
:87rI‘(—)< m2 ) Z( ).; z
2 h j=1 J2
ImkT 2
=4 (%) I 4(z) (3.9)

In pgo, (2.24) there appears the integral,

/ dky dky sinh(i-(i+§1—ﬁg))lcosh (G+Kk)?: p
P(T+Ek—k)?  §(T+E— k)

Ko (k=@ g oo\,
X cosh <E - ﬁ) cosh ( 3 ~ 5T cosh 5 " 5T (3.10)

which using the notation = logz = p/(kT) we can rewrite (3.10) as,

g g 1
dki dks dq - o
2 [ 2 [ i) expAg- (34 i — o) (3.11)
(G + k1 — ka)? /|

exp[2n — ¢ — G- (k1 — k) — k — k3]
(14 en—@E)*) (1 4 ek ) (1 + en—(@F)*) (1 4 en=43)’

where we have artificially introduced the integral over A for later convenience.
Next let us make the change of variables, k3 = ks — k1 — ¢. We now expand
the denominator in powers of z as we have done before, and we obtain,

S |
) L dqdk, dk ) ) ) )
283 (—1ytitists / % / X exp[(2+ j1 + ja + j3 + )7
Ji,d2,73,4a=0 TR

—2k%—k§—q2—2q*-121—2E1.E3—(1+A)§-E3—j1(§+ﬁl)2—j2k%

14



_jB(El + 123)2 — j4(l;1 + ks + 7)?] (3.12)

If we now look at the integration over El, we may do it by completing the
square in the exponent, and integrating over the Cartesian coordinates. The
step yields,

237r% i ('_1)j1'+jz+1"3+j4 3 / aq d];3 /d)\
iingniie0 2+ J1+ Ja+ja+ )z ) k3
x exp{(2 + j1 + jo + ja + ja)n — [(1+ j1 + j2) (1 + j3 + ja)k3
+((2+ J1 4+ g2 + 73 + Ja) (14 254) — 2(1 + J1 + J4)(1 + J3 + Ja)
FA2 4 j1 4 Jo + Ga + Ga))T - k3
HA 4+ i)+ 2+ 53)e°l/ 2+ i+ g+ s+ i)} (3.13)

The next step is to do the integrals over all the angles except that between ¢
and k;, whose cosine we denote as 7. Then, doing the integral over amplitudes
by the standard method for a quadratic form in the exponent, we get,

0 _1)j1 +j2+73+7a
247_[_% Z (

j17j27j31j4:0

———————— | dX exp[(2+ 1+ J2+J3 + Ju)n
\/2+]1+32+]3+J4_/1 (2 g1 o ]

where

AC=(1+j1+ j2)(1 + 73 + 7o) (L + j1 + Ja) (1 + j2 + 73)
B=a+bX (3.15)
a=(2+j1+jo+js+ja) (3 +7a) — (L+ j1 4+ Ja) (1 + Js + ja)
b=L1(2+j1 4 j2 + js + ja)

The integral over 7 is elementary and yields,

et = (3.16)
9 o 1) tiztistia y2+j1+j2+is+a f bdA bA
%13 Z =) - z - : / sin”! Vi 7
V241 +j2+js+is J a+bA vac

J1,92,753,74=0

which yields the expansion and defines T(z) for later use. As a practical mat-
ter, we still need to do the integral over A. It can be evaluated in terms
of dilogarithms of complex argument {Grdébner and Hofreiter [21], (341.4b)}

15



which does not improve the situation much over direct evaluation. The sub-
stitution which we will make in the next section in order to convert to a series
in { is numerically ill-conditioned so we need a method which will yield highly
accurate values. The integral we need to evaluate is of the form

Yy B o0 %)kv%—l—l
— = — 3.17
where we use the notation,
(@o=1 (Gh=g-(g+1) - (g+k-1), k=1 (3.18)

The radius of convergence of the series (3.17) is |v| = 1. Its use when v &~ +1
is too slow to be practical. We know that the nature of those singularities is

v/1 —v%. A uniformizing transformation which regularizes v/1 — v? will make

the whole function regular at v = +1. We choose the transformation,

,  8w?(3—w?)

T 9y 6wt twt (8.19)
which converts,
1 — w?
3

and makes the points v = +£1 into regular points w = +£1. There will be
singular points at w = 4-iy/3 which leaves a radius of convergence of 3 in w?.
This improvement is adequate for our purposes. The substitution of (3.19) in
the series (3.17) must be done with care as many decimal places will be lost in
the tripling of the radius of convergence. Never-the-less, we have carried this
computation out in multiple precision arithmetic (58 decimals) and obtained
adequate accuracy to evaluate the series coefficients in (3.16).

The contribution to the pressure pgo, contains the integral,

/ dky dky dks sech? (%k% — ﬁ) (3.21)

(Ez — 51)2(E1 — E3)2 [1 + exp (k% — ﬁ)] [1 t exp (k§ ~ ﬁ)} )

Let us make the change of variables p; = Eg — lgl and pr = Eg — lgl. If we now
expand (3.21) in powers of z, as we did above, we obtain,
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ot . . . . . . d d -
4 > js(—1)]1+]2+’3732(31+”+]3)"/ = fzdkl exp(—j1pi — Jop3

J1,j2,53=1 12

—(j1 + Jo + Ja)kT — 2151 - k1 — 2o - ). (3.22)

l
!

If we integrate over ks by completing the square in Cartesian coordinates, then
(3.22) becomes,

N

" i ]3( 1)]1+]2+]3 3 (1 +d2+i3)n / dpy dps
Jr.ads=1 (1 + g2+ ja)? e
N . 2 s . 2 919504 - D
% exp ( j1(J2 + J3)pi .]2(]1. + J?T)Pz + 21j2p1 P2 (3.23)
J1tJ2+ 73

If we integrate over all the angles except that between p; and p> and denote
the cosine of that angle by 7, then if we integrate over the magnitudes in the
standard way for a quadratic form in the exponent, we get

o0 o — jl j2 j3 3 (.71 j2 .73)"7
3 1 z
87'['37'['5 -73( )

Jiydarja=1 J1d2(j1 + 2 + Ja)?
1
—
/ VIL)2 (3.24)

S a2 + 1) + 53 + g1ga(1 — 72))%

The final integral can now be evaluated to yield,

167[_% i j3(—1)j1+j2+j3_3Z(j1+j2+j3)77 Sinfl <\/ j1j2 )
. . R N - ; . ; N
J1,42,53=1 J1j2(j1 + 2 + J3)? (J1 +J3) (G2 + J3)

(3.25)
which can be rearranged in the slightly more convenient form,
167r%(3)(z) = (3.26)
00 J J—2 J—j1—1 J— —
2 J1 -1 J1J2
167> 2 sin : . ,
;ﬂ \/7 11221 ];1 J1je (\/(J —Ju)(J — j2) )

which also defines (:)(z) for later use.
Next we consider the e* corrections to the Debye-Hiickel term. In the previous

section we derived the series expansion for =, in 2;j.,. It has only a linear term.
We now consider the series expansion for Z in powers of z = exp[u/(kT)]. To

17



this end notice that

)

n(lz) = Z(—l)”"'lz" exp[—ne(E)/(kT)]. (3.27)

n=1

If we substitute this expansion in (2.30) and exchange the orders of summation
and integration, we get,

9 (2mkT\*
) (3.28)

E(q ws) = 1% <7
X 3 (=1)" TR {i/dt /d/'{ exp [—nFcQ —t <:—; + 2ik - v — iVZ)] } ,
n=1 0

where we choose,

F= (2”;’§T) "R 2= explu/(T)] (3.29)

The integral over k is again of Gaussian form, so we can evaluate it as,

2 (2rmkT\® & (—2)" T 242
E(@,w3)=ﬁ< WZ; ) Z( Z%) O/dt exp <—Vn —:—;t) sin(tv?).

(3.30)

The next step is to substitute (2.32) and (3.30) in (2.28), sum over w; and
then integrate over ¢. It is evident from (2.28) that there are three types of
terms, i.e., electron-electron, electron-ion, and ion-ion. We will first treat the
electron-electron terms. The counter term involves the limit as |g] — 0 of

Z(¢,0), which by (3.30) and 3.896 (3) of Gradshteyn and Ryzhik [22] is,

v 2 27rka%°°(—z)”n 3 n o,
5%904%0)‘&53“@( z )Z -3 (51)
2 [2rmkT\? & (—2)" /n
AERYETE.

where 1F1(a;b; 2) is the confluent hypergeometric function. With this result
we get for the contribution from the w3 = 0 terms,
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8et (ommkT\® [ ®2 \?
KT\ R2 omkT )

(3.33)

where erfi(z) is —ierf(iz) and erf is the standard error function. Thus we may
re-express the integral in (3.32) as,

H(nl,ng) (334)

_ /i_f lﬁ exp (—i(nl + ng)yz) erfi (@O erfi < - ,,) - 1]

0

By means of an integration by parts, adding and subtracting the same term,
and using (3.33), and using the known behavior of Dawson’s integral [23], we
can deduce that

1 7d 1 s
3 0 12 No V 2 4
&Y. 7L exf <—”an) exp (—Ezﬂ) — 2] (3.35)
nyv 2 4

m J6r n 07 d l# exp <—%(n1 + ng)v ) erfi <\QF”) erfi (@”)]

/nangv?

By performing yet another integration by parts, we may further deduce that,

H(ny,na)= \1/2_ K\/TL—Q + %) erfi (@y) exp <_%yz)

# (v ) o (Vo (-222)] o)

+(7112j/% /du exp (—%(nl + o) ) erfi (@0 erfi (VQ"_"V)

19



These integrals can be done. First we need

—ex ex 2 , .
lf/ p(- O/pgdg (3:37)

where we have re-expressed erfi by (3.33). Gradshteyn and Ryzhik [22] give
the result (6.317, as revised in the latest edition)

% €xXp

ﬁ/d:r exp(—a*z?) sin(bx) 7dt exp(t?) = VT < 4b;> (3.38)

If we multiply both sides of this equation by exp(—pb) db and integrate from
b =0 to b= oo then by Gradshteyn and Ryzhik [22] 3.893(1) we get in the
limit as p — 0,

I

=3 (3.39)

The other integral that we need is given by the last line in (3.36). It may be
re-expressed by (3.33) as

A/ T1To
IQ =

3.40
L (3.40
Vi 1 13 n 13 n
’ U/VZdV P <_Z("1 * ”2)V2> 1 <§ 52" 2) 1 <§ 517 2) !
where the 1 F;’s are confluent hypergeometric functions. By a change of vari-
ables we can cast (3.40) into the form of Gradshteyn and Ryzhik [22] 7.622(1)
so that we get

2 1 F(11‘3‘1>_ T
P ity \2°2°27)

3.41
—, (3.41)

where F' is a hypergeometric function. Thus we obtain

3
2

™
H(nl, 77,2) =

! (3.42)
{\/7+ V73 + 2(ny + na) l\/— \/1— <nil " niz)l/z”

Thus the coefficients in (3.32) have been explicitly evaluated to give, (w3 = 0)
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8¢t (2rmkT\° [ B2 \? )
c = T z bl
Pouael =30 T2 omkT

o0 oo (_Z)n1+n2

HOEDIDY

ni=1ns=1 (n1n2)%

H(ny,ns). (3.43)

We take note that when n, is finite and ny is very large that H(nq,ns) is
proportional to ,/ny so the series in (3.43) converges geometrically for small
enough z.

For the terms with w3 # 0 we get,

95617t (2rmkT\* [ K2\ zymtne oy
A [ / dt
e () (i) S S X (ot [ e [

UJ35£0 ny 1n2 1

X {exp l—yz <ﬁ + ﬁ) |k7‘°:| (t1 + tQ)] sin(t,1?) sin(tZVQ)}. (3.44)

1 o

Performing the sum over w3, we obtain,

32¢* (2rmkT\° [ 1 \? i i (=)
kT h2 2mkT n1=1ns 71177,‘7)
Tdv [T 4, 1] 2sin(t tor?
o i Jan {0254 B)] 2ot
v?J / exp[2m(ty +t2)] — 1
Using the identity, 2 sin(t;?) sin(to1?) = cos[v?(t; —ta)] — cos[v?(t1 + t2)], and

a known integral [Gradshteyn and Ryzhik [22] 3.945 (2)], we may evaluate the
integral over v. The result is,

\V]

1 4 9 kT g 0o oo [ n1+n2
- /f; <%) 5> (7/dt1/dto{exp[27r(t1+t9)]_1} '

ni=1ns=1 (nln’)

l
2 2\’ : 1 t —t
L 4+ 2 ) 4+ (t; —t2)*| cos |- arctan %
nq Up) 2 5 + o3
ng ng
2 42\’
<—1 + —2) + (t1 + 1)’

1 t1+ 1o

cos | — arctan p 2

n1 w) 2 L | =2
] no

By means of the trigonometric identity,

cos E arctan (%)] = \l % (1 + ﬁ), (3.47)

X

N1

(3.46)




we may rewrite (3.46) in a simpler form as,

8v/2e* (2mmkT :
kT ( h? ) W(z)
~ 0 o (_Z)nl-i-nz

Wi =% % — [ dtr [ dtz {expl2m(ts +12)] — 1}

ni=1ny=1 (711?12)2

1
t2 t2 2 2 t2 t2
% |-_1_|__2 +(t1—t2)2-| _|__1_|__2
[ Ty T

2 2\
(— + —‘) + (1 + t2)?
ni T2

PDH4,c2 = —

+ 2+ 23 (3.48)

These integrals are evaluated numerically using the Romberg integration
method (Numerical Recipes [24], recoded in double and multiple precision for
the case of a double integral). First however, we make the change of variables,

ti= (" +&)/vV2, t=(n-£E)/V2 (3.49)

to insure that the integrand is analytic at the origin.

Next we compute the results for the ion-ion case. First, in line with equation
(3.31) above, we can compute from (2.32) that

2 2n M kT > 1 3 2
lim S0, (q,0)=— lim 2 (| |- 1P (Lo ——
lim, Zion(4,0) @ffow( 2 )L( 2 4)]

i <27erT)

=27 % (3.50)

Thus, using (2.28), we find that the ion-ion contribution for w3 = 0 is

Z4et22 (2 MkET P Ty 3 2\
e ) [ EseeT) e e
0
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This integral is the special case ny = ny = 1 of the integral in (3.32). Thus,
from the value of H(1,1) of (3.42), we get for (3.51),

7rZ4e4z 2rMKT >
. ion 24/2) . .bh2
PDH.3 = kT < % ) (5 \/_) (3.52)

For the ws # 0, ion-ion contribution we get

4647422 27erT ;¥ o T T
VTkT / tl/ & ] v

« {exp[—(t% + t%) ]2 sm( 2tl) s1n(1/2t2) }
o2 + )] — 1

(3.53)

As in (3.46), the integral over dv can be evaluated, giving the result

2V2eA 742, (2nMET\? T
PDH,c4 = fkT fon < ) /dtlfdtQ {exp[2m(t; + t2)] — 1}

g {\/[(t% B2+ (t — 12)2)° + 83+ 13

—\/[(ti{ +13)2 + (b1 + £2)2)7 + 83 + 13 } : (3.54)

Finally we compute the results for the electron-ion case. The terms for w3 # 0

are,

16Z%4 2, (20 M ET >
VTkT h?2

1
X exp l— (%t% + gtg) v — %(tl + tg)] sin < t1V2> sin(tov?). (3.55)

—
NE!
N——
N
M8
Bl 2t
S
=3 °—3
S| &
&
0\8
S

Doing the sum over w3, we get,

167242, (2 MET\? < )i
kT 12

0

2

X exp [— (Et2 + lt2> VZ] 2s1n( tiv ) sm(t
M2 exp[27(ty + t2)] —

le
0\8
S| &
\8
&
D\S
S

= (3.56)
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Again the integral over v can be evaluated, and it gives,

kT h2 M

B 8v27%e* 2 (27erzT>g (m)
N M

<3 (_Z%)n / dt / dto{exp[2n(ts + to)] — 1}

n=1 T
X (Et2+ltz)2+<ﬁt —t>2 %+Et2+lt2
Mt Mt MR
(mt2+ 1t2>2+ (mt +t)2 %+ My Ly (3.57)
\ Ml ng Ml 2 Ml n2 . .

The electron-ion terms for the case of w3 = 0 are,

_ 4724z, (20 MEkT %(
PpH,c5 = JTkT 2

Since, normally the mass of the ion is much larger than the mass of the elec-
trom, it is worthwhile to examine the behavior near the the limit as 7+ — 0. In
the case of the wz # 0 terms, (3.57), the terms in the integrand cancel in this

limit. The first order expansion in §; yields a convergent integral. Thus the
result here is of the order of 7+ and so can normally be neglected. However,

even though the coefficients in the z series in (3.57) are each of order 77 in the

small 7+ limit, when we interchange the order of sizes and let ¢ éﬁ — 0o then
the limit is of the order of { with the coefficient independent of 7. For very
large values of (, this term should also be included. For the w3 = 0 terms,
(3.58), by the asymptotic behavior of Dawson’s integral [23], we can easily

see that 1 F(1; %; —21%) o v7! for large v. Thus 1 Fy(1; %; —21%) ~ 1 where
its contribution is significant. Hence we can scale out the behavior on n by

choosing v = /%

v. Therefore, the contribution from the ion-electron terms is
approximately,

N2Zze4zion 2 MKET %(m>< z )
PDHS™ = roper B2 M) \1+z

NS

J& ] (:32) -
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wZ2%4 2, (20 MET 2 m z
—_ (-) ( ) . (3.59)
2T h?2 M) \1+z

where the integral was done by an integration by parts and the use of Grad-
shteyn and Ryzhik [22] 7.612(1).

In summary, to obtain the actual numerical values of the fugacity expansions,
we need to evaluate, (i) for the ion-ion case, the double integral in (3.54),
(ii) for the electron-ion case, we have evaluated all the necessary integrals,
and for (iii) the electron-electron case, we need the double integrals in (3.48),
where ny + ny < A, with A/ the highest order sought in the series. Notice
that the ion-ion integral is the special case n; = ny = 1 of the corresponding
electron-electron integral.

4 SOLUTION OF THE FUGACITY EQUATIONS

In this section we need to eliminate the fugacities z and z;,, and re-express
the thermodynamic quantities in terms of observable variables. From standard
quantum statistical mechanics, the required functions may be obtained from
the grand partition function Q by means of

P ,

T log Q(Q, T, 2, Zion), (4.1)

ZN = z2 log Q(Q, T, 2, Zion) , (4.2)
8Z Q,T,zion

0
Nion = Ziony log Q(Q7 T’ 2, zion)

Do , (4.3)

0Tz

where N, = N for system neutrality. Gathering together our results from
other sections we have,

orMET ® 2rmkT\ * [ Is(2
log Q(Q,T, 2, zion) = Zionf2 <WT) +29< m;:z ) { 1)

1 [2rme*\? VT [2mme? 1 [ M\? 2 -|
- X — z? (-) ion + —=1_1
T ( h2kT ) (=) + 5 < h2kT ) |“ \m) A a(z)J

2mme?
h2kT

ST(2) — 6(2) + —=z) — VW () — ]
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M\ 2
+(0.2842582246 — 0.006578041016) Z* (—) 22
m

+ 0(64)} (4.4)

where h is Planck’s constant and the numerical coefficients in the last line will
be explained in the next section [See, (5.22)]. The quantities 7,,, X, T, 6,1,
and W are given by equations (3.5), (3.7), (3.16), (3.26), (3.43), (3.46), and
(3.48). Explicit numerical representations for these quantities are given in the
next section. The following notation will be useful,

C_ZN h? > _ 2mme? i _[39]% o
T00 \2mmkr) 0 T\ R2kT ) 0 T aan] 0 T 4y

. Ze < Z )é 2 3 \¢ ¢ \*®
& — — 2 3 — — — A/ 4.5
Y rykT 9 SECIR RYATY Y 3n2Z z0, (45)

where ay = h? /me? is the Bohr radius. We have previously defined ¢, y and
7 [(2.16) and (3.1)], but include them here for convenience. Equations (4.2)
and (4.3) become,

m™n 2 (1.2 2
ZN = 20 <2 hsz) { If((%)) + %52 7 1(2)]
[ 2, ol
+e [Z (E) Zion + ﬁf_%(z)J z—zf_%(z)
—¢t Ezdizf(z) — zdiz(:)(z) + %zd—zz)(z) — 4\/52(%W(2)

Nion = zionQ (7

3
M3 2
X {1 +/mE7? | 72 <—> D e b —=1 :(2)
m

4|y 2 4 %) : 4
+€ lQZ 7(1_'_2) 4(0.2776801836)Z (m zm] + o(e )}, (4.7)

where zdizf( (2) =[1_ 1 (2)]? has been used. These equations are two, coupled,
non-linear equations in the two unknowns, z and z,,. Fortunately, they can
be solved through order € in a fairly straightforward manner. First, given z,
equation (4.7) yields,
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Zion = % <%>% {1 — J/rZ%3 [2ZC+ %1_%(2)]%

et EZZ q i 5 8(0.2776801836) Z° (%) c] + o(e4)}, (4.8)

where the leading order of z in powers of ¢ is sufficient to the accuracy required
here.

As the derivatives of the various functions of the fugacity are more natural in
terms of dlog z, it is most convenient to solve (4.6) by means of the expansion

2(¢,€) = exp (m0(C) + Q)€ + m(Q)e + (et +++),
20(¢) = exp (m(C)). (4.9)

To leading order in ¢, i.e., €, (4.6) yields

=3 (4.10)
I'(3)

B[
~~

[Nl [o8]

Since, [5], the right-hand side is a series in z beginning with z +. .., the series
may be reverted to give zo(() as its solution. The substitution of z¢(¢) for z in
(4.8) completes the expression of z, in terms of observable quantities to the
order €* and gives us Zion(€). The reversion procedure has been done by Baker
and Johnson [5] through order ¢*°. They carried at least 58 decimal places as
the equations are rather ill conditioned. See also, [25]. The solutions for the
remaining terms are

2T

-I-T\/;_r(o) {%zdizf(zo(o) - Z%(:)(zo(o) + %2%7’[,(20(0)
4y T (M7 Zion(0)20(C)

_4\/§z£W(zo(C)) -7 (E) (0t o(C ))2], (4.13)

27



where the leading order of z;,,(¢) in powers of € is sufficient to the accuracy
required here.

When these results are back substituted into (4.4) and expanded in powers of
y, we get,

PQ

Va7 = Go(0) + Ga(Oy” + Ga(Qy” + Ga(Qy' + o(e”). (4.14)

The coefficients in this expansion are,

8¢ dﬁ 2 ¢
0=~ (@) {<Z i ?(((cgf))) [ch T j%f 1<zo<c>>]%
3¢ lQZ“ \/—Ié(zo(C))] } (4.17)
50 = 177 (%) (o 4oz 420 = 5 (14 (0))’
+T\/?(C)) BZ%T('ZO(O) - Zd%@(Zo(C)) + %zd%zﬁ(zo(g))

d -+ m C20(¢) 1714 A
—4\/§ZEW(ZO(C)) -5 w] - Z[gT(zo(C)) — 6(20(¢))

+%1/3(zo(g)) — 4v/2W (29(¢)) — 4(0.2776801836) 2> (%) : gQ] } (4.18)

To repeat the remark after (4.4),the quantities y, (, I, X, T, 6, 4, 20(¢),
and W are given by equations (3.5), (3.7), (3.16), (3.26), (3.43), (3.46), (3.48),
(4.5), and (4.9). Explicit numerical representations for these quantities and
the necessary derivatives are given in the next section.

Baker and Johnson [8] report that for a pure element, Z=2z , and in the case
of mixtures,

2
Especies N] Zj Z — ZSPGCiGS N] Zj

7 =
) bl
Especies N] Zspecies N] Z]

(4.19)
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where N; is the number of ions and Z; is the nuclear charge in each species.

5 EVALUATION OF THE COEFFICIENTS OF THE PERTUR-
BATION EXPANSION

In a previous section we have derived series expansions in the fugacity z for
the various functions needed to calculate the expansion of the pressure in
powers of the electronic charge. While is is possible to express the fugacity
in terms of the de Broglie density (3.1) and the temperature by (4.9-4.13)
and to give a compact representation thereof, it is usually more convenient to
work directly in terms of the de Broglie density. It is our aim in this section
to produce representations of the various quantities as functions of the de
Broglie density which are accurate to within about 0.1%. The series for the
fugacity in powers of the de Broglie density (for the ideal Fermi gas which
is what we actually require) has been given by Baker and Johnson [5]. It
can be substituted into the expressions of the previous sections to give the
required series in the de Broglie density. Then following the method of Padé
approximants [11], we can construct the require representations. First, we give
[9] the following representation for the fugacity 2,(() as,

20(¢) ~ exp{¢[A(Q)]5} — 1, (5.1)

where,

0(¢) = (5.2)
1+ 0.23728611( + 2.4737617 x 1072¢% + 1.4222435 x 10733
1+ 0.67662597¢ 4+ 0.14567696(2 + 1.4254337 x 10—2(3 + 8.0482522 x 10—4¢*

within 0.1%. This representation follows from the series expansion of (4.10)
and the well-known asymptotic result [20]

z — 00. (5.3)

The symbol < means “is asymptotic to.”

The general method we use to obtain these representations is first to compute
a fair number of terms in the series expansion. Even with an explicit repre-
sentation for the series as a function of the fugacity, care must be taken in
the re-expression as a function of the de Broglie density because the problem
is numerically ill-conditioned, and many decimal places can be lost. We have
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found that the retention of 58 decimals is sufficient for all our purposes. The
next step is to determine the asymptotic behavior. From this information, we
compute a function of the original series (e.g., the cube) which can be ex-
actly represented, both at the origin and at infinity, by a Padé approximant.
We then compute a sequence of Padé approximants and use the lowest order
one which gives the desired degree of accuracy. Since, for our problems, these
sequences converge fairly quickly, this method seems to be quite efficient.

The most straightforward one follows immediately from (4.10)

1,0 = L(0(0) = Y°. (5.4)

o=

Next, Baker and Johnson [5] have given the representation,

214 (%(C))
31,((C)

|14 0.61094880¢ + 0.12660436¢% + 0.0091177644¢3

~ 5.5
1+ 0.080618739¢ ] ’ (5:5)

= 90(¢)

This representation, and all the subsequent ones given in this section are
accurate to about 0.1 %, unless otherwise noted. The next ingredient we need
was given by Baker and Johnson [6],

1

_ z _ V¢ ~ v3(¢) | *
Q= 40 = s <V g - 69

where

v3(¢) =1+ 0.17549205¢ + 1.1833437 x 107%¢* + 3.0923597 x 107*¢%,
us(¢) =1+ 1.2361522¢ + 0.54327035¢” + 9.7985998 x 107°¢°
+6.1912639 x 1073¢* + 1.6191557 x 107*¢%. (5.7)

For ©((), using the result,

0(¢) = %g as ¢ — oo, (5.8)

which is obtained by taking the limit as z — oo of ® and ( and evaluating
their integral definitions, Baker and Johnson [8] obtained the representation

6(¢)
05(¢)’

=

0((¢) ~ (5.9)

30



where

p6(€) = 0.30229989¢3 4 5.0287616 x 1072¢* + 3.6103004 x 1073¢°
+1.0210313 x 107*¢S,

05(¢) =1+ 1.2478566¢ + 0.55778521¢? + 0.10432105¢>
+7.2823921 x 1073¢* + 2.1384429 x 107*¢°. (5.10)

Baker and Johnson [6] also obtained, by use of

X(¢) % 2 (%) o (5.11)

and (3.8), the representation,

A

X(¢) = X(=20(¢))
oL 1+ 0.088412769¢ s
5 92 |1+ 0.79551953¢ + 0.19350034¢2 + 0.013716390¢3 |

(5.12)

We generally use the convention that F({) = F (20(¢)) with zo(¢) explained
at (4.9). An exception is the usage 1,,(¢) = 1.(20(C)).

The representation of 7'({) presents an additional problem not present for the
other functions. The asymptotic value as { — oo is proportional to (, as in
the case of ©, but here we have not been able to evaluate the asymptotic coef-
ficient analytically. This coefficient is the zero temperature diagram evaluated
approximately by Monte Carlo by Gell-Mann and Brueckner [15] in their study
of the electron-gas correlation energy. We have taken a different approach to
its evaluation. We have computed the series through the 31st order and obtain
the asymptotic result,

T
% = 0.3025 £ 0.0004, (5.13)

where it is the apparent error which we have quoted. This result corresponds
to 61()2) = 0.04814 £ 0.00006 in the notation of Gell-Mann and Brueckner, in
agreement with their result of 0.046 + 0.002. When we use this asymptotic
value, we obtain the representation,

(5.14)

where
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v6(¢) = 1.5397859¢% + 0.681831¢> 4 0.10939850¢*
+8.8741342 x 1073¢° 4 2.67165364 x 107*(°
75(¢) =1 + 1.3317659¢ + 0.66394907¢? + 0.15311424¢>
+1.6850905 x 10 2¢* + 8.8319130 x 10 *¢°. (5.15)

In addition Baker and Johnson [10] have computed the following representa-
tions

1

d N 99(¢) |®
13O Ve [ (5.10)

where

qo(¢) =1+ 0.37668660¢ + 9.6301161 x 1072¢% 4 1.5693115 x 1072¢3
+1.9382738 x 1073¢* 4 1.7187680 x 107*¢® 4 1.1386611 x 10~°¢¢
+5.2236572 x 1077¢7 4 1.5250645 x 1078¢® 4 2.8147079 x 10719¢?,
r13(¢) =1 4 3.5586672¢ + 5.6761084¢> 4 5.3449240¢> + 3.2936668(*
+1.3912374¢5 + 0.41034013¢° 4 8.4619775 x 10 %(7
+1.2086067 x 107 2¢% + 1.1828498 x 10 3¢° + 7.9676618 x 10 °¢1°
+3.7403172 x 1076¢* +1.1210162 x 1077¢*2

+2.0835040 x 1079¢"3. (5.17)
i " 3 U5(C) g
0l ~ ¢ | 2L, (5.18)

where

o5(¢) =0.74589509 + 9.6382201 x 1072¢ 4 2.5364237 x 1072(?
+1.7998638 x 10 3¢3 4 1.8272243 x 10 *¢* + 6.5777413 x 10 8¢5,
wi3(¢) =1 + 5.5159030¢ + 14.121520¢2 + 22.232525¢> + 24.033724¢*
+18.855659¢° + 11.057783¢° + 4.9145985¢" + 1.6582118(®
+0.42040226¢° + 7.8062423 x 1072¢* 4 1.0090665 x 1072¢1!

+8.1802486 x 10 *¢'? +3.1641077 x 10 °¢*3. (5.19)
i o 2 Sll(C) :

where
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511(¢) =29.205927 + 18.336679¢ + 5.7381144¢> + 1.2777140(3
+0.22387177¢* + 3.1394202 x 1072¢° + 3.4607956 x 1073¢®
+3.3616630 x 107*¢" + 2.2772942 x 107°¢® + 1.4387042 x 1076¢?
+5.0169486 x 10~3¢'% 4 1.1753523 x 10 ¢,

t16(¢) =1 + 5.6888442¢ + 15.084824¢> + 24.728910¢° + 28.024183¢*
+23.252756¢° + 14.592415¢° + 7.0532994(" 4 2.6484232¢®
+0.77327943¢° + 0.17453022¢*°
+3.0057345 x 1072¢1! + 3.8682590 x 1073¢!?
+3.6101238 x 10 *¢*3 4 2.3433749 x 10 °¢™
+9.8914961 x 1077¢"® 4 2.2239400 x 1073¢'S. (5.21)

For the e* correction to the Debye-Hiickel term, we find that for the ion-ion

case, we may use the expression for zi,, (4.8) in terms of ¢ as substituted into
(3.52) and (3.54). This yields

S (2mmkT\?
—8(0.2842582246 — 0.006578041016)¢*¢* 7> (%) kT( 7”}:; ) _
(5.22)
Similarly, for the electron-ion case, we obtain from (3.59),
2mmkT > 2
—me*(ZkT ( ) 5.23
e h? 142/’ ( )

and we can use the expression (5.1-2) for z.

For the electron-electron case, we need to construct some suitable representa-
tions. First, for the case of the w3 # 0 terms, the series is given by (3.48). In
Table 1 we give both the coefficients of the series in z and the corresponding
coefficients for the series in (. It is to be noticed that substantial cancellation
occurs in going from the series in z to that in (. We have carried 21 decimal
places in the calculation of the fugacity series, and evaluated the integrals to
about 18 decimal places using Romberg integration [24] and the Brent multiple
precision package [26].

It is helpful to have the asymptotic limit for large 2. Since z enters our cal-
culations through =, we need first to compute the limit of = as z — oco. If we
make the change of variables (3.29) and (2.33), but with the electron mass m
in (2.33) instead of the ion mass M, then (2.30) becomes,
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Table 1
Series coefficients for the ws # 0 correction to the Debye Hiickel term

n in fugacity in de Broglie density

0 0.0000000000 0000000000 E+000 0.0000000000 0000000000 E+4000
1 0.0000000000 0000000000 E+000 0.0000000000 0000000000 E+000
2 4.6513774096 5163678750 E—003 4.6513774096 5163678750 E—003
3 —3.4963487161 6090598808 E—003 —2.0732820793 831582707 E—004
4 2.6015308683 2349543112 E—003 9.8879197604 3979831 E—006

5 —2.0076756122 2211161956 E—003 —4.2626300883 636177 E—007

6 1.6028131711 2774032555 E—003 1.5323092299 68351 E—008

7 —1.3152892745 6794096619 E—003 —3.9190088396 787 E-010

8 1.1034163301 7761627824 E—003 1.6080369966 0 E—012

9 —9.4235995629 5790550502 E—004 5.6380750481 E—013
10 8.1671770419 6771805805 E—004 —4.093577309 E—014
11 —7.1655028481 4367263145 E—004 1.70292681 E—015
12 6.3521151009 9370927217 E—-004 —3.453999 E—017
13 —5.6811665775 9281693552 E—004 —1.20181 E—018

(3, w5) 4 2mkT 2
Wa) =
D)= ok \ A2

xR {i]?dt fﬁzdm_/l dz exp {— [:—T +i(2kvz — V2):| }}, (5.24)

0

(1]

where we have used the fact that n(l;) = 1 when |#| < K and equals zero
otherwise in this limit. Doing the integral first over  and then over x we get

><§R{ 7odt ]{/‘G dk exp{ [ oT v?) ]}]O(QM/t)} (5.25)

where the j,(z) are the spherical Bessel functions. Taking the real part (5.25)
becomes,
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. 2wK? (2mkT ;% w3\ . .
E(q,ws)=— @n kT < S, ) /dt exp (—tﬁ) Jo(v°t) 1 (2K vt).
0

(5.26)

For the case, w3 = 0, this integral is a special case of the Weber-Schafheitlin

integral and can be done [Gradshteyn and Ryzhik [22], no. 6.574 (1) and (3)].
The result is,

K (2mkT\? 13 12
— ( m ) F(l,——;§; ",)>, if v < 2K
=(7,0) = (2m)2kT h* . 2'2"4K? (5.27)
’ A (amkTNE (15 AR L
3(2m0)%kT \ B2 i PR
and
) K (2mkT\*
=(0,0) = — 5.28
(.0 (%)%T( R ) (5.28)
For computational purposes it is worthwhile to note that
F<1 552 )—24-433(1 z”)In T for 0 < x <1,
1 3 1 1
< 5; _> §x2[%(1—w2)ln<ztl)+l] for1 <x < oo
(5.29)
By (2.28) the electron-electron contribution from the wz = 0 term is
omkT\ " Fd _
8 4kT( ”; ) /—f [2(d,0)* — =(T,0)’] (5.30)
2

If we change variables so that z = v/2K, then we get the limiting behavior in
the large z limit as,

4Ke* (2mkT : /ld
(2m)4kT \ A ) @

Td
+f
A
1

8

(33

lﬁp (1,%;3;{2)2—1]}. (5.31)
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When we use the asymptotic results,

K = [logz]% and (< (logz)% then K < (¥C> . (5.32)

3\/_

This result allows us to express the large z limit (5.31) as the large ¢ limit
completely in terms of a quadrature. We have evaluated the integral in (5.31)
numerically The value is —1.644912. We speculate that the exact value is
— 2 (3y/7/ 4) . Fortunately these hypergeometric functions have only an
(l — z)In(1 — z) type singularity at z = 1.

For the terms from w; # 0, we have from (2.28) and (5.26), after performing
the sum over w3 as we did to obtain (3.45) previously,

32e*K* kaT 2 7dV7dt 7dt Jo(v?t1)71(2Kvty)jo(V%t2) 51 (2K vts)
(2m)*kT ;o ! / 2 exp[2m(t1 +t2)] — 1 '

(5.33)

As we are doing the limit as z — oo, and also (5.32) K — oo, we will make
the change of variables z = v/K and 7; = t; K%. Thus (5.33) becomes,

32¢*K <2ka) 2 7d71 7)(172 I dz jo(x?m)51(22m) jo(2272) 51 (2272)

(2m)*kT \ K? / / exp [2n(m + =) K2] -1

(5.34)

To proceed further with the analysis of the large z limit, we need to analyze the
integral of the four spherical Bessel functions. First, suppose that 77, 7 < 1.
Then it will be the large z range which is important, but for small enough 7’s,
x7; will still be small. Therefore, changing variables so that y = 22, we get by
expanding the j;’s,

27'17'2

/fdyjo @/ﬁ)]o(?ﬁ"))

(5.35)

/ dz jo(z>11)jo(2°72) 51 (2271 ) 51 (2272) <
0

This integral can be done {Gradshteyn and Ryzhik [22] 6.574(1)} and for
71 < Ty yields,

_ Tt [2np 113 <§>2 . (5.36)
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Thus the integrand of (5.34) is bounded (and of order K?) at the origin, since
T1 S T2,

Jam 1
nr o > (5.37)

for all 7y, 7 > 0, and the hypergeometric function is finite over the whole
range 0 < 7y /7 < 1.

In addition we need to investigate the case 7, 75 > 1. Here the integral over
the four Bessel functions in (5.34) reduces to

/ z j1(2271)71(2272), (5.38)
0

as the range of small z, = = O(7;!), is important here and the j, are ap-
proximately equal to unity. Again, this integral can be done [Gradshteyn and

Ryzhik [22] 6.574 (1)], and yields

3

- (EY , (5.39)
121/7'1’7'2 T2

where again we take 7y < 75. It is of interest to know whether the integrals
over the 7’s converge for large 7’s but yet for 7y + 7 < K2. The key quantity

to consider is
d d
/ dr / nen / / Ll (5.40)
To Tl + T2 Tl 1+ TZ

where a is a sufficiently large lower bound to insure the validity of the asymp-
totic expression for large 7’s that we have derived. Performing the integrations
over 73 we get,

d 2
/7; [To—a—Toln( e >—|—7'2—7'21n2] (5.41)

T3 T+ a

a

This integral diverges logarithmically at the upper limit. Thus it is not the
case that there is convergence for 7y + 7, < K?2. Returning to (5.34) we see
that in the large K limit, the integral (to leading order) can be treated as
if it were cut off for 2n(1 + ) ~ K 2. In this case, we see that the leading
behavior in (5.41) is just

=< 4(1—In2)In K. (5.42)
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Hence, the asymptotic behavior of (5.34) is

8(1 —In2)e*K3In K [2mkT : _2y7m(1 —In2)e*¢In{ (2mkT :
3(2m)kT R? 3(2m)kT R’
(5.43)

By means of the results of Table 1, (3.48) and (5.43) we have constructed the
following representation for the w3 # 0 terms. It is

8(1 —In2)e* [2mrmkT 2
kT < 12 )Cln[HCw(C)], (5.44)

where

Wap(€)
w(() = D (0]
Wy (€) = 0.067346700 + 9.3939016 x 1073¢ + 5.4999650 x 10~ *¢?
+1.5556298 x 107°¢3 + 1.9146773 x 10~ '¢*
+5.1832472 x 10 10¢5,
Waown(¢) =1 + 0.15038586¢ 4 9.9260174 x 1073¢ 4 3.2718165 x 1074¢?
+5.1100023 x 1075¢* + 2.5538627 x 1078¢°. (5.45)

The method used to construct this representation is the method of Padé ap-
proximants [11]. There is apparent convergence to within 0.1 percent for ¢ < 64
and the maximum apparent error for the rest of the range is about 1.4 per-
cent. Owing to the rapid cancellation and the length of time to evaluate the
integrals to very high precision, we have not been able to extend the series
further in a useful manner. Thus we have not attained here the accuracy of
better than 0.1 percent that we have used in all our other representation.

By (3.42), (3.43), (5.31), and (5.32) we have constructed, again by the method
of Padé approximants, the following representation, accurate to within 0.1%,
for the w3 = 0 term. It is,

YR MR
P() =—¢ ( wdown(C)> : (5.46)

where

Yup(€) = 1.0231844 + 0.45318839¢ + 0.095316231¢* 4 0.011705667¢>
P
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+9.1059919 x 107*¢* + 4.2549269 x 107°¢°
+1.1069955 x 1079¢
Yaown(€) = 1 + 3.5071425¢ + 5.4925423¢? + 5.0519900¢> + 3.0179830¢*
+1.2217594¢° + 0.33914784(% + 0.063854977("
+7.8956792 x 1073¢® 4 6.0886249 x 107*¢°
+2.7848395 x 107°¢"" + 7.2517253 x 107 "¢", (5.47)

In addition we will need representations for the derivatives z% |70 of the
w3 = 0 and the w3 # 0 corrections. First, for the w3 # 0 we have decided to
differentiate directly the representation (5.44), in order to maintain thermo-
dynamic consistency in view of the relatively large (up to 1.4 %) error in this
representation. Also, it is difficult to construct a suitable form to compute a
representation directly from the information at hand. We use the result here

that zd% = z%d% for our current case. The result is

d B Clw(¢) + o' (O] [os(O)]F
z@{cmllww(cn}—c{ln[1+4w<o]+ Lt 0 H%(o]'

(5.48)
where the v3, us are given in (5.7) above.

The representation for zdizzb has been computed by differentiating the series
(3.43) and then converting that series into one in { by series substitution. We
have found it necessary to carry 67 decimal places and to compute 49 terms
in the series in order to be sure of adequate convergence. By using the method
of Padé approximants, we have derived the following representation,

d s Ew(0) )’
zazﬁ(C):—C <m) , (5.49)

which is accurate to within about 0.1%, and where

U, (¢) =8.1854753 + 5.1703568¢ + 1.6353918¢? + 0.39395601¢°
+0.077914611¢* + 0.012556919¢° + 1.7216069 x 1073¢°
+2.0337199 x 10~*¢7 + 2.0352336 x 10 °¢8
+1.7240939 x 107°¢° + 1.2327804 x 107 7¢"°
+7.0961694 x 1077¢!* 4 3.0818831 x 10710¢*
+9.8120219 x 10 "2¢"® 4 2.3255188 x 10 13¢™
+3.2032567 x 10 1°¢*° +2.2168101 x 10 '7¢"0

Wgown(¢) =1 + 6.2886448¢ + 18.642756¢> + 34.623100¢° + 45.153698¢*
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+43.930225¢> + 33.063484¢5 + 19.701498("

+9.4346743¢% + 3.6655114¢° + 1.1615938¢°

+0.30090755¢ + 0.063692406¢% + 0.010987487¢13
+1.5381071 x 107 3¢ 4 1.7373695 x 10 ¢

+1.5729005 x 107°¢16 + 1.1322275 x 1076¢Y7

+6.4092767 x 10 8¢1® +2.8021760 x 10 9¢*°

+9.1677492 x 107 ¢ 4 2.1198659 x 10~ 2¢*

+3.0687902 x 1071*¢** + 2.0529879 x 10716¢*? (5.50)

In deriving this representation, we have used the result that

d L4 \NT . .

where {Z} is the integral in brackets in (5.31).

6 BEHAVIOR OF THE COEFFICIENTS OF THE PERTURBA-
TION EXPANSION

We show in Fig. 6 the ideal Fermi gas function Gy. In Figs. 7 - 9, we show
the ratios of the G;’s to the ideal Fermi gas function. The G;’s are defined
by (4.14). These functions are evaluated for the case of aluminum. We have
selected aluminum because it is much studied, it is not a complex material,
and it is relatively centrally located in the periodic table. It is to be noticed
that in the large ¢ limit, all these ratios tend to zero, which means that the
pressure tends to the ideal gas pressure (for fixed y). In the small ¢ limit, the
relative size of the coefficients of €2 and e* tends to zero, however that for 3
remains of order unity. More explicitly, when { — 0, The contribution of the
Gy term is a constant, that of the G term is of the order ( %yz, that of the
(3 is of the order of 3 and that of the G4 term is of the order of ¢ %y‘l. In the
other limit, { — oo, the contribution of the G| term is of the order of §, that
of the G5 term is of the order of y2, that of the G5 term is of the order of 33,
and that of the G4 term is of the order of ( %y‘l. The G4 term requires some
additional comment. The ion-ion correction term to the Debye-Hickel term
becomes dominant in G4 (4.18) for very large (. Remember that we are only
treating the ions as Maxwell Boltzmann particles, that we are ignoring ion-
ion exchange, and most fundamental, that we are treating m/M as negligibly
small. In this region, a better treatment of the ions is surely required not only
for the ion-ion terms but also for the electron-ion terms as well. As long as
these terms are small, we feel the treatment is adequate, but the treatment is
probably insufficient when they become dominate.
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Fig. 6. The Fermi ideal gas function times Z, plus 1, which is the value of pQQ/NkT
in the absence of Coulomb interactions.

A fuller comparison of the size of the corrections to the ideal gas has been
made. In order to gain some indication of the region of validity of the ex-
pansion we have computed the values of y({) for which the third order (most
restrictive) and the fourth order terms are equal to 0.1%, 1.0% and 10.0%
of the value of the ideal gas function. These results are plotted in figures 10
and 11, again for the case of aluminum. The regions above the plotted curves
correspond to smaller values of y.

In Fig. 10 we have also plotted the extrapolation of the Lindemann law for
the melting curve assuming that the Griineisen constant vy = % This curve is
provided for orientation, relative to our expansion results. One obvious feature
seen in Fig. 10 is the strong cusps in the error contours along a line of constant
(. The explanation for this feature can be seen in Fig. 9 and corresponds to
the value of { for which G4({) = 0. At this point, the corresponding y — oo,

which causes the cusp.
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Fig. 7. The ratio of the coefficient of 42 to the ideal gas function.

In Fig. 11, we see that the region of validity of the ideal gas formula extends
to lower temperature as the density increases. For densities higher than those
plotted the approximations that we have used which treat m/M as neglectably
small (2 ~ 2.0338 x 10 ° for aluminum) may break down. One example would
be the attractive electron-ion term for ws # 0 (3.57) which we have omitted.
There are a number of other effects that come into play as the density increases.

7 LOW DENSITY IONIZATION PROFILE

The results of the previous section allow us to give the leading order terms in
the expansion in inverse temperature of the terms of the low density expansion
of the pressure. We complete the results of (4.17) of ref.[9]. Thus we have,
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Fig. 8. The ratio of the coefficient of 3 to the ideal gas function.

pQ 1 \/271' 3 3
= 1421 | ——(Z +1)>
NeT { ¢ l3 (Z+1)ze+
1 1, (rmln2 7v2 =« 7r2,<m>% 4
¢ =z 17—
+Cl2§ 2€+<2ﬁ . 27 a2 \m) )T

e l¥(2+1)%e3+...] +0(¢?) }, (7.1)

where € is given by (4.5). We have compared this result with those of DeWitt
et al.[27] and find agreement in this limit, except for the % term where their
result appears to be too large by a factor of 2. Note that their result is only for
an electron gas, so the ion-ion terms (which are dominant in the coefficients
of €3 and €* for large ¢) do not appear in their results.

One of the conclusions which can be drawn from (7.1) is the low density limit

of the ionization profile, at least for high temperatures. Since in Saha theory
[28] it is common to take the degree of ionization to be proportional to the
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Fig. 9. The ratio of the coefficient of y* to the ideal gas function.

electron pressure, dividing the electron pressure by the ideal electron pressure,

we deduce,

1-% 2 (13.6052\ 2
T - -
T lEenn] -
where qg is the Bohr radius. By contrast, the Saha formula [28]
Z; 1
2 7.3
Z 1+ ACexp(x/T) (7:3)
gives
Z; P . P%
1— — x —, insteadof o —, 7.4
Z T3 T2 (7.4)
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Fig. 10. The contours where the G4(¢)y* term contributes 0.1% (solid curve), 1%
(dashed curve) and 10% (dotted curve) of the ideal gas pressure. The dashed-dotted
curve is the extrapolated value of the melting curve according to the Lindemann
law, assuming the Griineisen constant v = %

given by (7.2). Here p is the electron density. The difference in the power of p
is presumably a combination of quantum and Coulomb effects.
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